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Flow in a closed-loop thermosyphon heated from below exhibits a sequence of
bifurcations with increasing Grashof number. Using the Navier–Stokes equations
in the Boussinesq approximation we have derived a model where, in the case of a
slender circular loop, the first Fourier modes exactly decouple from all other Fourier
modes, leaving a system of three coupled nonlinear partial differential equations that
completely describes the flow in the thermosyphon. We have characterized the flow
through two bifurcations, identifying stable periodic solutions for flows of Prandtl
number greater than 18.5, a much lower value than predicted previously. Because of
the quadratic nonlinearity in this system of equations, it is possible to find the global
stability limit, and we have proved that it is identical to the first bifurcation point.

The numerical study of the model equations is based on a highly accurate Fourier–
Chebyshev spectral method, combined with asymptotic analysis at the various
bifurcation points. Three-dimensional computations with a finite element method
computational fluid dynamics code (MPSalsa), are also pursued. All three approaches
are in close agreement.

1. Introduction
When a closed vertical loop of fluid is heated from below, a sequence of bifurcations

ensues, leading from pure conduction to a convective unidirectional flow and then
to periodic or chaotic flow. This is the problem of convection in a closed-loop
thermosyphon, also called a natural convection loop. This problem has implications
for the performance of heating/cooling systems (Martin & Sloley 1995; Japikse 1973).
Moreover, it offers useful insights into general convective phenomena. The problem
is appealing because of the possibility of observing complicated behaviour in a
physically simple system.

Pioneering work in this field was done by Keller (1966) and Welander (1967) who
identified that unsteady flow results directly from the dynamics of the system, rather
than from an unsteady force. Recent mathematical models by Velázquez (1994) and
Rodrı́guez-Bernal & Vleck (1998b) focus on the transition to complex dynamics. These
works have modelled viscous and inertial terms with friction factors, leading to pre-
dictions of complex dynamical behaviour in qualitative agreement with observations.
Also, recent works by Yuen & Bau (1996), Wang, Singer & Bau (1992), and Boskovic &
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Krstic (2001) have used feedback to control the onset of chaos. For a thorough survey
of the early literature on this problem, see the review article by Greif (1988).

This problem is a variation of the well-studied Rayleigh–Bénard problem. In
Rayleigh–Bénard convection, a layer of viscous fluid is heated from below. One finds
that instability arises after a critical temperature gradient has been reached, and
that the motions seen following this instability have a stationary cellular structure
(Chandrasekhar 1961). Under suitable boundary conditions, a secondary structure
arises where the fluid forms rolls, which undergo a Hopf bifurcation and become
oscillatory (Salinger et al. 2005; Busse & Clever 1979; Willis & Deardorff 1970).

The Lorenz system, involving three ordinary differential equations, has most
frequently been used as a model for the flow in a thermosyphon (Rodrı́guez-Bernal &
Vleck 1998a; Greif 1988). In particular, the model displays periodic and chaotic flows
for various parameter ranges (Lorenz 1963; Shimizu & Morioka 1978; Morioka &
Shimizu 1978). Experimental studies also report oscillations for various parameter
ranges (Stern, Greif & Humphrey 1988; Sano 1991). The Lorenz equations involve
several parameters that must be measured experimentally or computed by making
assumptions on the shapes of the temperature and velocity profiles in the ther-
mosyphon. In this paper, rather than reducing the equations to a system of ordinary
differential equations, we create a reduced-order set of partial differential equations
involving only two spatial coordinates.

We derive this system of partial differential equations by assuming purely azimuthal
(toroidal) flow along the loop. We represent the toroidal coordinate as a periodic axial
direction, thus neglecting curvature effects along the loop, and we account for gravity
effects through a gravity function that depends on the axial position. We are led in
this way to a three-dimensional system of partial differential equations that makes
the assumption that the flow at any cross-section is purely axial. For loops with small
enough aspect ratio (the ratio of the radius of the cross-section to the length of
the loop) we believe this assumption is well-justified. By using a modal expansion,
these equations can be written as an infinite system of partial differential equations
involving only two spatial coordinates. We show that for the case of a circular loop,
this system rigorously reduces to a system of three partial differential equations, where
the axial coordinate has been averaged out. We also show that for arbitrarily shaped
symmetric loops, the linear stability of the conducting solution can be reduced to this
same set of partial differential equations.

Our reduced-order system of partial differential equations has the advantage over
the Lorenz model that no assumptions are needed about the shape of the velocity
and temperature profiles. At the first bifurcation point, these profiles are found to be
given by the Bessel function J0 on the interval from zero to its first zero, γ01. Although
this function looks similar to a quadratic function, the result obtained from deriving
the Lorenz equations based on the assumption that the profiles are quadratic is off
by almost a factor of two in predicting the onset of convection. As the governing
parameter, the Grashof number, is raised beyond its critical value, the profiles look
increasingly less like quadratics. At Grashof numbers near the Hopf bifurcation point,
there is little justification for assuming that the profiles are quadratic.

For the case of loops of circular cross-section, we assume solutions with radial
symmetry, and our equations involve only one spatial coordinate. We use highly
accurate spectral numerical methods to analyse this system. Excellent agreement is
found between asymptotic analysis and simulations of the reduced model. Further
comparisons of the predictions of the reduced model were pursued with numerical
simulations of the full three-dimensional Navier–Stokes equations in the Boussinesq
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approximation, using the code MPSalsa (Salinger et al. 1999, 1996; Shadid et al.
1999), developed at Sandia National Laboratories to compute solutions to reacting
flow problems on massively parallel computers. Again, good agreement was found in
the ranges where the latter are feasible, i.e. around the onset of convection. However,
full three-dimensional calculations near the Hopf bifurcation require prohibitively
high resolution and they proved unfeasible.

Two dimensionless parameters characterize the flow: the Prandtl number Pr (2.13),
a property of the fluid, the ratio of kinematic viscosity ν to thermal diffusivity κ ,
and the Grashof number Gr (2.14), which is proportional to the thermal gradient.
Linearizing about the numerically computed purely conducting trivial state, one
arrives at an eigenvalue problem from which we identify the onset of convection as
a pitchfork bifurcation at a critical value of the Grashof number, Grp . This value is
independent of the Prandtl number. Using energy methods, we formulate a variational
problem that proves that the trivial solution is globally stable for Gr < Grp . We use
continuation in Grashof number to numerically follow the convecting branch and
also linearize the flow about the numerically computed convective state to determine
the onset of a Hopf bifurcation at a second critical value, Grh > Grp . The oscillations
found in the present model correspond to a pulsating flow where the period of
oscillation is roughly equal to the time it takes for fluid to circulate around the loop.

The location of this Hopf bifurcation and its character are shown to be dependent
on Pr. By numerically estimating the coefficients of a Landau equation describing
the weakly nonlinear evolution of perturbations about the convective state near the
Hopf bifurcation point, we show that the character of the bifurcation changes from
subcritical to supercritical as Pr becomes larger than 18.5. For comparison we mention
that the Prandtl numbers for water, alcohol, silicon oil, and glycerine, respectively,
are 6.75, 16.6, 41, and 7250 (Landau & Lifshitz 1987).

We emphasize that the contributions this model makes to the study of the thermo-
syphon problem are that it captures the transition from the trivial to convective state
in close agreement with full three-dimensional simulations, and it captures stable
periodic flow. By assuming the flow profiles are radially symmetric, we allow for more
complex profiles, as seen by experiments, than do Lorenz-type ordinary differential
equation (ODE) models. Our model is limited in that it cannot capture asymmetric
flow reversals, which become evident in experiments as the aspect ratio is increased.
The model is valid for laminar flow in the range of Prandtl and Grashof numbers
used in this work.

The outline for this paper is as follows. In § 2, we give a derivation of our partial
differential equation (PDE) model and compare it to the common thermosyphon
model, a Lorenz-like ODE model. Section 3 explores the stability of the trivial
branch up to the first bifurcation point, a pitchfork bifurcation, and discusses its
global stability. We also provide results of numerical calculations in two and three
dimensions that validate our asymptotic analysis. In § 4 we analyse the stability of the
convective branch, identify the second bifurcation as a Hopf bifurcation, and identify
and analyse the transition between the regions of sub- and supercriticality of this
bifurcation. In § 5 we present the numerical framework that we use in this research.
Our conclusions are found in § 6.

2. Problem formulation
We study flow in a closed-loop thermosyphon – a tube which is bent into a vertical

closed loop, heated symmetrically from below. The cross-section of the tube and the
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Figure 1. Problem geometry.

shape of the loop can be arbitrary, though the majority of this paper assumes a
circular cross-section and circular loop.

We assume that the radius of the tube is small compared to its length, so that we
can think of the flow as if it takes place in a straight tube with gravity a function
of the axial distance along the tube. To achieve this reduction, periodic boundary
conditions are imposed on all the model variables (see figure 1).

Begin with the Boussinesq equations

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u + ∇
(

p

ρ

)
= ν∇2u + gα(T − T0)ez, (2.2)

∂T

∂t
+ u · ∇T = κ∇2T , (2.3)

where u is velocity, p is pressure, T is temperature, and t is time, and the parameters
are ρ (density), ν (kinematic viscosity), g (gravity), α (thermal expansion), and κ

(thermal diffusivity). T0 is a reference temperature, and ez is the unit vector in the
z-direction. Then enforcing that the flow has only an axial velocity component and
introducing the gravity function f (2πz/L) giving the component of gravity in the
axial direction, one arrives at the equations

∂w

∂z
= 0, (2.4)

∂w

∂t
+

∂

∂z

(
p

ρ

)
= ν∇2w + α(T − T0)gf

(
2πz

L

)
, (2.5)

∂T

∂t
+ w

∂T

∂z
= κ∇2T , (2.6)

Here w is axial velocity and z is the axial direction. It is easily seen by taking the
z-derivative of (2.5) that the pressure for the reduced system is independent of x

and y.
The equation of continuity implies that w = w(x, y, t). In these equations the

Laplacian is the two-dimensional Laplacian with respect to the variables x and y.
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Using the variable θ = 2πz/L, we can write our boundary conditions as

T (x, y, θ, t) = T (x, y, θ + 2π, t),

w(x, y, t) = 0 on ∂S,

T (x, y, θ, t) = T0 + Twall(θ) on ∂S,

where ∂S is the boundary of the cross-section, r = R. For the majority of this paper,
R = 1.

The above set of equations is based on a few approximations. We have assumed
that the velocity has only an axial component which is independent of the axial
coordinate, and we have ignored the axial components of the Laplacian. We make
these assumptions in the case of small aspect ratio (ratio of the cross-sectional radius
of the tube to its length). Previous reduced-order models of the thermosyphon have
made the same assumption concerning the velocity profile, and they have assumed a
particular form for this velocity profile as well, namely that it is parabolic. Our analysis
drops this last assumption. The assumption that the velocity is predominantly in the
axial direction is a very sound one; the assumption that the profile is independent
of the axial coordinate is an approximation, and we believe that in order to have an
asymptotic model rather than a heuristic model, this assumption would have to be
dropped.

Assuming that our governing equations of motion hold, the flow at any cross-
section described by this system will be axisymmetric, until a bifurcation occurs that
breaks this symmetry. With this in mind, throughout this paper we assume that the
flows at any cross-section are axisymmetric.

We integrate the momentum equation (2.5) over the whole length of the tube, and
periodicity in θ causes the pressure gradient to integrate to zero in that direction. We
arrive at the equation

∂w

∂t
− gαφ = ν∇2w (2.7)

where

φ(x, y, t) =
1

2π

∫ π

−π

f (θ) (T (x, y, θ, t) − T0) dθ.

Similarly if we multiply (2.6) by f (θ), integrate over the length of the tube, integrate
the advective term by parts, and use the periodicity of f (θ) and T , we arrive at the
equation

∂φ

∂t
− 2π

L
ψw = κ∇2φ (2.8)

where

ψ(x, y, t) =
1

2π

∫ π

−π

f ′(θ) (T (x, y, θ, t) − T0) dθ.

Finally, if we multiply (2.6) by f ′(θ), integrate over the length of the tube, and
integrate the advective term by parts, we arrive at the equation

∂ψ

∂t
+

2π

L
χw = κ∇2ψ (2.9)

where

χ(x, y, t) = − 1

2π

∫ π

−π

f ′′(θ) (T (x, y, θ, t) − T0) dθ.
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Equations (2.7)–(2.9) give us three partial differential equations in the four
unknowns w(x, y, t), φ(x, y, t), ψ(x, y, t), and χ(x, y, t). In general this system is
not a closed system of equations: we could continue multiplying (2.6) by higher
derivatives of f (θ) to get more equations in more unknowns, but the system would
not be closed. However, for the case of a circular loop, where f (θ) = sin(θ), we have

φ(x, y, t) = χ(x, y, t) for f (θ) = sin(θ)

resulting in a closed system of equations. In the next section we show that for an
arbitrary symmetric loop, where f (−θ ) = − f (θ), the systems governing the onset of
convection also close.

We need to supplement our partial differential equations with boundary conditions.
These boundary conditions are given by multiplying our exact boundary conditions by
1, f (θ), f ′(θ), or f ′′(θ) and integrating over θ . This leads to the boundary conditions

w(x, y) = 0 on ∂S,

φ(x, y) = A0 on ∂S,

ψ(x, y) = A1 on ∂S,

χ(x, y) = A2 on ∂S,

where A0 and A1, and A2 are defined as

A0 =
1

2π

∫ π

−π

f (θ)Twall(θ) dθ,

A1 =
1

2π

∫ π

−π

f ′(θ)Twall(θ) dθ,

A2 = − 1

2π

∫ π

−π

f ′′(θ)Twall(θ) dθ.

For symmetric loops with Twall an even function, A0 = A2 = 0. For simplicity drop
the subscript, denoting A1 = A.

Define the dimensionless variables by φ = Aφ̃, ψ = Aψ̃, χ = Aχ̃, w = (gαR2Aκ/

ν2)w̃, t = (R2/ν)t̃ , x = Rx̃, and y = Rỹ, where R is the radius of the cross-section
of the loop. Inserting these into (2.7)–(2.9) gives

Pr
∂φ̃

∂t̃
− Grψ̃w̃ = ∇̃2φ̃, (2.10)

Pr
∂ψ̃

∂t̃
+ Grχ̃ w̃ = ∇̃2ψ̃, (2.11)

∂w̃

∂t̃
− Prφ̃ = ∇̃2w̃, (2.12)

where the parameters are the diffusion ratio Pr (Prandtl number), and the control
parameter Gr (Grashof number):

Pr =
ν

κ
, (2.13)

Gr =
Ra

Pr
=

2πgαR4A

ν2L
, (2.14)

where Ra = 2πgαR4A/νκL is the Rayleigh number.
For simplicity, we require that ψ has the constant value A at the boundary, so that

ψ̃ = 1. Throughout the rest of this paper we will drop the tilde notation.
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For the majority of this paper we consider the case of a circular loop where
f (θ) = sin(θ), and hence φ(x, y, t) = χ(x, y, t). The only exception to this will be in
the next section where we consider the linear stability of the non-convecting solution.
Throughout this paper, we assume that the cross-section is circular and that there is
radial symmetry in the solutions.

When analysing circular loops we rewrite the system in vector form as

(D∂t − I∇2 − P)u = GrF (u), (2.15)

with

u =


φ

ψ

w


 =


u1

u2

u3


,

F(u) = u3Mu = u3


 0 1 0

−1 0 0
0 0 0


 u, D =


Pr 0 0

0 Pr 0
0 0 1


, P =


 0 0 0

0 0 0
Pr 0 0


.

Boundary conditions are given by

u =


0

1
0


 on ∂S. (2.16)

The system (2.15) along with the boundary condition (2.16) is the reduced PDE model
that is the focus of this study.

Many thermosyphon models begin with a Lorenz-like system. The present model
can be further reduced to the ODE Lorenz model by imposing a parabolic profile and
integrating around the loop. We present the details of such a reduction in Appendix A.

3. The onset of convection
3.1. Steady solution and bifurcation point

We begin by considering the case of the circular loop, where φ(x, y, t) = χ(x, y, t), and
the equations of motion are governed by the system (2.15) along with its boundary
conditions (2.16). This equation has the steady-state solution

u =


0

1
0


 .

To locate the first bifurcation we express the linear problem by an expansion about
the steady solution in a neighbourhood of the critical Grashof number, Grp , by

u = u0 + εu1(r) + O(ε2),

where ε measures the projection of the difference between the bifurcated solution and
the steady-state solution onto the left critical eigenvector. Since the linearized operator,

along with null boundary conditions and the inner product 〈u, û〉 =
∫ 1

0
(Prφφ̂ +ψψ̂ +

Grpwŵ)r dr is self-adjoint, the temporal spectrum is real and the principle of exchange
of stability holds at the bifurcation point. As with the classical Rayleigh–Bénard
problem, we can determine the critical Grashof number by solving a linear eigenvalue
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problem. Specifically, the system for u1 can be written as

∇2u1 +


 0 0 Grp

0 0 0
Pr 0 0


u1 = 0

along with null boundary conditions on the perturbation variables.
The equation for ψ1 decouples to give

∇2ψ1 = 0,

ψ1 = 0 on ∂S,

which has solution

ψ1 = 0.

The eigenvalue problem for variables φ1 and w1 is given by

∇2

(
φ1

w1

)
=

(
0 −Grp

−Pr 0

) (
φ1

w1

)
, (3.1)(

φ1

w1

)
= 0 on ∂S. (3.2)

To show that the only possible eigenfunctions are Bessel functions, define

λ =
√

GrpPr.

Then φ1 must satisfy the equation

∇4φ1 − λ2φ1 = 0,

which can be written as

∇2Φ − λΦ = 0, (3.3)

where

Φ = ∇2φ1 + λφ1.

Since φ1 and w vanish on the boundary, φ1 and ∇2φ1 must vanish on the boundary,
and hence Φ must vanish on the boundary. It follows that we have the boundary
condition

Φ = 0 on ∂S. (3.4)

Notice that we have defined λ as a positive number, and so the system (3.3) and (3.4)
has only the trivial solution. Then Φ is identically equal to zero. This implies that we
have the equation

∇2φ1 + λφ1 = 0,

φ1 = 0 on ∂S.

Assuming that φ1 has the form

φ1(r, θ) = einθq(r)

we see that q(r) must satisfy the eigenvalue problem

1

r

d

dr

(
r
dq

dr

)
− q

n2

r2
+ λq = 0,

q(1) = 0.
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The general solution to this equation that is not singular at the origin is given by

q(r) = KJn(
√
λr)

where Jn is the nth Bessel function. This shows that the system (3.1)–(3.2) has
eigenfunctions of the form (

φ1,n

w1,n

)
=

(
c1

c2

)
Jn(γnmr)

where

Jn(γnm) = 0.

Then

−γ 2
nm

(
c1

c2

)
=

(
0 −Grp

−Pr 0

) (
c1

c2

)
,

and satisfying the condition ∣∣∣∣∣
γ 2

mn −Grp

−Pr γ 2
mn

∣∣∣∣∣ = 0

gives the critical parameter value for the pitchfork bifurcation,

Grp =
γ 4

mn

Pr
.

The minimum over all m and n is given by Grp = γ01, the first zero of the zero-order
Bessel function. Note that this result correlates to the pitchfork bifurcation one finds
in the Lorenz equations, where the pitchfork bifurcation is a function of the Rayleigh
number (Tritton 1988). Because Gr = Ra/Pr, this result can be written Rap = γ 4

01.

That this critical value is independent of Prandtl number is characteristic of this type
of flow.

The eigenvector is given by (
c1

c2

)
=

(
γ 2

01

Pr

)
,

and so the first-order solution is

u1 = a1


γ 2

01J0(γ01r)

0

PrJ0(γ01r)


,

where a1 is constant. Because at the bifurcation point the eigenfunction has radial
symmetry, and the bifurcation was not symmetry-breaking, then the bifurcated
solution has the same symmetry.

We now briefly comment on the linear stability of the non-convecting state for
arbitrary symmetric loops. By a symmetrical loop we mean one that has reflectional
symmetry about a plane P containing a vertical line. For loops of this form we
have f (−θ ) = −f (θ), and hence f ′′(−θ ) = −f ′′(θ). Before the onset of convection, the
flow will have reflectional symmetry about the plane P . For this reason we know
that for this solution φ0 =χ0 = 0. In this general case, the equation for ψ is coupled
to χ (rather than φ through the term wχ). However, in the linear theory this is a
second-order term, since χ0 = 0. It follows that in the general case the linear theory
applies, with the constant A being determined by the general expression for f (θ)
rather than using f (θ) = sin(θ).

3.2. Supercritical pitchfork bifurcation and global stability

The global stability of this trivial branch is proved in Appendix B.
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There is a limit of the parameters (Grashof number and Prandtl number) below
which any perturbation will settle to the trivial solution. This limit is identical to
the pitchfork bifurcation point found above. Because the trivial branch is globally
stable up to the pitchfork bifurcation point, this proves that the pitchfork bifurcation
is supercritical. The global stability boundary is also important in that it limits the
range of the secondary bifurcations. This will be discussed further in § 4.

The proof of global stability proceeds as follows. First we define an energy function
that depends on a parameter λ. The rate of change of energy can be maximized
by a function Gr(λ) of the Grashof number, and each value of λ corresponds to a
different energy rate. We show that this rate of change of energy is always negative.
Then maximizing this function of Grashof number over all values of λ, we find the
optimal energy function, that is, the one that gives the largest value of Gr for which
a decaying energy rate can be guaranteed. This value of Gr is the global stability
limit, and corresponds to the pitchfork bifurcation point. Details are provided in
Appendix B. We note that a similar result occurs in the Boussinesq equations of
the Rayleigh–Bénard problem, and the global stability of the trivial branch there is
proved by Joseph (1976).

3.3. Numerical results

The critical Grashof number is found to be Grp = γ 4
01/Pr, or Rap = γ 4

01. Using the
spectral code described in § 5, we find that the onset of convection agrees with this
analytic result to machine precision. Similarly, results with the full three-dimensional
simulation using MPSalsa, also discussed in § 5, converge toward the asymptotic
result with mesh refinement. The close agreement of the three independent methods
of locating the onset of convection lend validation to the assumptions we have made
in deriving the reduced PDE model given by (2.15) and (2.16).

This asymptotic result is also in qualitative agreement with models that use the
Lorenz equations, where the initial bifurcation point is at the constant R = 1 (see
Appendix A). Using the Lorenz equations (A 1), with parameters based on our
particular derivation, we find that the system will become convective at Ra = 64; in
fact, from our previous analysis, it is seen to become unstable at Ra = γ 4

01 ≈ 33.44, so
a thermosyphon model using our derivation of the Lorenz equations will overpredict
the region where the trivial solution is stable.

Table 1 illustrates the location of the eigenvalues found with the spectral code.
Notice the convergence of the eigenvalues with increased resolution. For a variety
of Gr, 32 modes suffice to find the eigenvalue to 8 significant figures. Figures 2 and
3 illustrate the location of eigenvalues in the complex plane for various Grashof
numbers for Pr = 7, computed with the spectral eigenvalue code. Table 2 compares
results for the most unstable eigenvalue computed using the finite element code,
MPSalsa with results computed using the spectral eigenvalue code. This demonstrates
that the full three-dimensional simulation requires a quite refined mesh to achieve the
accuracy of the spectral method, though a coarser mesh is sufficient to capture the
transition within a given range of Grashof values. Details of the numerical methods
of each code are presented in § 5.

4. Stability and bifurcation of the convective branch
In this section, we will examine the stability of the convective branch and analyse

the Hopf bifurcation. We introduce a method that allows us to obtain the criticality
of this Hopf bifurcation solution.
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N λ1 λ2 λ3

Pr = 7, Gr = 4; Grp = 4.78
16 −0.11986932 −0.82616942 −4.20077833
32 −0.11986928 −0.82616942 −4.20077531
64 −0.11986928 −0.82616942 −4.20077531

Pr = 7, Gr = 5; Grp = 4.78
16 3.3436286822 ×10−2 −0.82616942 −4.16298621
32 3.3436286827 ×10−2 −0.82616942 −4.16298317
64 3.3436286827 ×10−2 −0.82616942 −4.16298317

Pr = 20, Gr = 1; Grp = 1.67
16 −0.11280433 −.28915930 −1.48906023
32 −0.11280433 −.28915930 −1.48905918
64 −0.11280433 −.28915930 −1.48905918

Pr = 20, Gr = 2; Grp = 1.67
16 5.35008552 ×10−2 −0.28915930 −1.45463818
32 5.35008552 ×10−2 −0.28915930 −1.45463711
64 5.35008552 ×10−2 −0.28915930 −1.45463711

Table 1. The first three eigenvalues of flow in a thermosyphon for the trivial branch. N =
number of spectral modes. Note that the trivial flow becomes unstable at Gr = γ 4

01/Pr. Note
also that λ2 depends only on the ψ component of temperature and so is independent of Gr.
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N Gr = 30 Gr = 32.5 Gr = 35 Gr = 37.5

Pr = 1; Grp = 33.44
20 −0.758 −0.533 −0.316 −0.108
40 −0.389 −0.163 0.054 0.264
80 −0.303 −0.078 0.139 0.348
spectral −0.306 −0.082 0.133 0.341
asymptotic −0.306 −0.082 0.133 0.341

N Gr = 4.29 Gr = 4.64 Gr = 5 Gr = 5.36

Pr = 7; Grp = 4.78
20 −0.176 −0.123 −0.0705 −0.0189
40 −0.0967 −0.0370 0.0171 0.0704
80 −0.0713 −0.0158 0.0387 0.0923
spectral −0.0753 −0.0205 0.03334 0.0865
asymptotic −0.0753 −0.0205 0.03334 0.0865

Table 2. The first eigenvalue of the trivial branch for flow in a thermosyphon computed with
MPSalsa with RT = 1, RH = 10, and N2/16 × (N + N/20) uniform mesh. The spectral result
at resolution 32 modes corresponds to the eigenvalue computed directly from the asymptotic
model.

4.1. Convective solution and bifurcation point

For Gr > Grp , we compute the convective solution to the system (2.15) and (2.16)
numerically using the spectral code described in § 5. Solution profiles computed with
this code are given in figures 8–10 in § 6.

The system resulting from linearizing about the convective branch is given by (see
Appendix C)

(D∂t − I∇2 − P)u1 = GrhJ0u1. (4.1)

This system can be cast as a generalized eigenvalue problem to determine the critical
Grashof number, Grh, indicating where the convective solution loses its stability. This
is found to occur through a Hopf bifurcation. See figure 11 in § 6 for the numerically
computed critical Grashof number as it depends on Prandtl number. In table 3 we
report eigenvalues of the convective branch obtained using the spectral code. We
note that attempts to locate the Hopf bifurcation using MPSalsa have as yet been
unsuccessful, due to the large systems that result from the fine mesh discretizations
necessary to capture the dynamics of the flow at these high Grashof and Prandtl
numbers. We view this as confirmation that our strategy of employing a highly
accurate reduced PDE model easily discretized by a spectral method is necessary in
conducting a stability and bifurcation analysis of the thermosyphon problem in the
parameter range exhibiting periodic behaviour.

4.2. Criticality of the bifurcating solution

We use a weakly nonlinear stability analysis to examine the solution in a neighbour-
hood of the steady-state solution. Additionally, we employ a multiple-time-scale
analysis, allowing τ = ε2t , where ε =

√
|Gr − Grh| with Grh the bifurcation point so

that Gr = Grh + jε2 with j = ±1 according to whether we consider values of Gr
above or below the bifurcation point. The base state is time independent, and in this
analysis one considers perturbations that can depend on the ‘slow’ time, τ. We make
a further rescaling to the time variable so that the bifurcating periodic solution has
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N λ1 λ2 λ3

Gr = 10
16 −0.38966583 ± 1.06623072i −4.22920743 ± 0.83528015i −6.71435768
32 −0.38967750 ± 1.06625057i −4.22924245 ± 0.83529406i −6.71433609
64 −0.38967750 ± 1.06625057i −4.22924245 ± 0.83529406i −6.71433609

Gr = 50
16 −0.29153807 ± 3.22110087i −4.08359747 ± 2.68818657i −7.10593143
32 −0.29158500 ± 3.22112920i −4.08324280 ± 2.68805007i −7.10590921
64 −0.29158500 ± 3.22112920i −4.08324280 ± 2.68805007i −7.10590921

Gr = 300
16 −2.86 × 10−2 ± 7.76286427i −3.98176664 ± 7.04824907i −7.06274178
32 −2.74 × 10−2 ± 7.76272788i −3.98493589 ± 7.05070856i −7.06544438
64 −2.74 × 10−2 ± 7.76272788i −3.98493592 ± 7.05070859i −7.06544440

Gr = 350
16 −2.30 × 10−3 ± 8.34640116i −3.95978468 ± 7.60465151i −7.03438673
32 −8.37 × 10−4 ± 8.34580017i −3.96462820 ± 7.60592416i −7.03555062
64 −8.37 × 10−4 ± 8.34580016i −3.96462826 ± 7.60592417i −7.03555065

Table 3. The first three eigenvalues of the convective branch for flow in a thermosyphon
with Pr = 7.0 N = number of modes.

frequency 1 with the substitution s = ωt . The bifurcation frequency will enter the
system explicitly.

Assuming completeness of the eigenfunctions of the linearized system, a solution
can be expanded:

u(r, t, τ ) =
∑

i

ai(τ )eλi t ui(r) + c.c.,

where c.c. denotes the complex conjugate. The goal is to identify the nonlinear
behaviour of the solution near the bifurcation point.

Expand the solution

u = u0(r) + εu1(s, r) + εu2(s, r) + O(ε3).

Expand the frequency as

ω = ω0 + εω1 + ε2ω2 + O(ε3).

Standard Hopf bifurcation theory gives that ω1 = 0. Consider the expansion in
a neighbourhood of the critical Grashof number, Gr = Grh. See Appendix C for
analysis of the resulting system under this expansion.

4.3. A numerical scheme to extract Landau coefficients

We can continue the above analysis to characterize the bifurcation. At order ε3 we
arrive at a Landau equation

da(τ )

dτ
= jαa(τ ) + β|a(τ )|2a(τ ) (4.2)

where the computation of the constants j = ±1 and α and β can be carried out
by standard asymptotic methods as shown in Appendix C. As an alternative to
computing the coefficients explicitly, we can use the following numerical scheme to
extract the Landau coefficients.
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It is the signs of the real parts of α and β in (4.2) that determine whether the
bifurcation is sub- or supercritical. In particular, when jα/β > 0, the bifurcation is
subcritical, and when jα/β < 0, the bifurcation is supercritical. Writing a(τ ) in polar
form as ρ(τ )eiθ(τ ) and α and β in complex form as αr +iαi , βr +iβi , respectively, gives

dρ

dτ
= jαrρ + βrρ

3,

dθ

dτ
= jαi + βiρ

2.

The extraction procedure is as follows. Compute the time integration of the full
equations, with an initial value of u0 +ε A1i , where u0 is the convective solution at the
bifurcation point and A1i is the imaginary part of the eigenvector associated with the
leading eigenvalue at the bifurcation point. Note that this is just a particular choice
of constants cr and ci in the O(ε) solution

(cr + ici)e
iω0t (A1r + iA1i) + c.c.

At every time t , compute the solution Φ(r, t). The solution must take the form

Φ(r, t, τ ) = u0 + ε(a(τ )(A1r + iA1i)e
iω0t + c.c. ) + (exponentially decaying modes).

We use this equation to extract the values a(τ ), given A1r , A1i , and ω0. In terms of ρ

and θ , we have the equation

Φ(r, t, τ ) − u0

ε

= 2((ρ cos θ A1r − ρ sin θ A1i) cos(ω0t) − (ρ cos θ A1i + ρ sin θ A1r ) sin(ω0t)).

Integrating (Φ − u0)/ε over a period against cos(ω0t) and sin(ω0t) respectively
gives 2(ρ cos θ A1r − ρ sin θ A1i) and −2(ρ cos θ A1i + ρ sin θ A1r ). Solving the resulting
system of two equations in two unknowns to find ρ cos θ and ρ sin θ at each point tn,
n = 1, 2, 3, . . . yields an n-vector of sample points. Extract ρn = ρ(tn) from these and
formulate the least-squares problem

dρn

dτ
= jαrρn + βrρ

3
n

and solve for the constants αr and βr . We approximate

dρ

dτ
(tn) =

ρ(tn+1) − ρ(tn−1)

ε22π/ω0

+ O(ε4).

(See Bergeron et al. 2000 for a discussion of the use of a similar method of extracting
Landau coefficients.)

Table 4 demonstrates the consistency of the extracted coefficients with mode
resolution. Simple linear analysis will give an estimate of the coefficient αr . In table 5
we compare this linear estimate with the extracted coefficient and notice the close
agreement.

Results from running this extraction procedure at different Prandtl numbers for
various Grashof numbers are also given in table 5. Solutions evolve for 10 periods
before data are collected (the time step used is 10−4) to allow the next most unstable
mode to decay. Notice the good agreement between the linear analysis and the
extracted linear coefficient α. (The formula for computing dρ/dτ is second order,
explaining the error present in calculating the linear coefficients.)

At Prandtl number 18.5 the bifurcation transitions from sub- to supercritical.
Figure 4 shows the ratio of jα/β for various Prandtl numbers for Gr approximately
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N extract αr extract βr

Pr = 7 Gr = 345
32 −4.80 × 10−4 0.738 × 10−4

64 −4.80 × 10−4 0.809 × 10−4

128 −4.80 × 10−4 0.702 × 10−4

Pr = 15 Gr = 196
32 −6.33 × 10−4 0.197 × 10−4

64 −6.33 × 10−4 0.196 × 10−4

128 −6.33 × 10−4 0.199 × 10−4

Pr = 20 Gr = 223
32 −4.01 × 10−4 −0.065 × 10−4

64 −4.01 × 10−4 −0.069 × 10−4

128 −4.00 × 10−4 −0.073 × 10−4

Table 4. Landau coefficients as computed for various mode discretizations N .

Gr linear αr extract αr extract βr

Pr = 7 Grh = 351.7679
345.0, j = −1 −4.80 × 10−4 −4.80 × 10−4 0.738 × 10−4

358.0, j = +1 −4.68 × 10−4 −4.67 × 10−4 −0.843 × 10−4

Pr = 15 Grh = 200.6050
196.0, j = −1 −6.33 × 10−4 −6.33 × 10−4 0.197 × 10−4

205.0, j = +1 −6.18 × 10−4 −6.18 × 10−4 −0.209 × 10−4

Pr = 20 Grh = 227.9197
223.0, j = −1 −4.00 × 10−4 −4.01 × 10−4 −0.065 × 10−4

233.0, j = +1 −3.91 × 10−4 −3.91 × 10−4 0.080 × 10−4

Table 5. Landau coefficients for the PDE system with N = 32.
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Figure 4. The ratio of Landau coefficients jα/β for the PDE model indicating
the criticality of the Hopf bifurcation.
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(a) (b) (c)

Figure 5. Plots of solution vs. Grc for (a) Pr < Prc , (b) Pr = Prc , (c) Pr > Prc , respectively.

2% below (j = −1) and 2% above (j = +1) Grc. From the Hopf bifurcation theorem
(Glendinning 1994), when this ratio is positive the bifurcation is subcritical and when
it is negative the bifurcation is supercritical. While the Lorenz equations do predict
a supercritical Hopf bifurcation, they predict the change at a much higher Prandtl
number (on the order of P = 200 (Tritton 1988)). The difference between the present
model and the Lorenz model is significant in this respect. Note that P corresponds
directly to Pr (see Appendix A), and experimental verification is feasible.

4.4. The supercritical Hopf bifurcation

This model captures periodic behaviour of the flow in the thermosyphon in a
parameter value range that is not found in Lorenz-type models, specifically the
change from a sub- to supercritical Hopf bifurcation at a Prandtl number of 18.5.
This is a significant difference between the models and is evidence that, in particular
for flows with Pr greater than 18.5, the reduction to the Lorenz equations is not an
accurate model of the flow.

The point (Prc, Grc) is the most interesting point in parameter space. Here the
branching becomes singular, with a Landau equation of the form

da

dτ
= α1a + α5a

5.

In the vicinity of this critical point, the equation is of the form

da

dτ
= α1a + α3a

3 + α5a
5,

where α3 is very small; this corresponds to the first sketch in figure 5. Figure 5 illus-
trates the various bifurcation diagrams in the neighbourhood of this critical Prandtl
number. For values of Pr just below Prc, there is a subcritical bifurcation. This
bifurcation must turn around, because of the global stability limit, discussed in § 3
and Appendix B. At Prc, the structure is quartic. At Pr> Prc, the bifurcation is
supercritical.

4.5. Turbulence

At Grashof and Prandtl numbers of practical interest, the flow in a thermosyphon is
laminar. It is known that the chaotic solutions to the Lorenz equations correspond to
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Pr Gr ω w(0)
2π

ω

2πPr

wGr

7 351.7679 8.3657 0.1541 0.751 0.812
12 205.1804 5.1394 0.2641 1.22 1.39
15 200.6050 4.6035 0.2956 1.37 1.59
25 299.6914 4.4099 0.3092 1.43 1.70

Table 6. Estimation of the time it takes for the fluid to circulate around the loop.

chaotic fluctuations of the fluid as a whole, rather than small-scale turbulent effects.
Thus when chaotic motion is seen, it is laminar chaos. See Tritton (1988) for a
discussion of turbulence in the Lorenz model.

Creveling et al. (1975) performed experiments on flow in a closed-loop thermo-
syphon and estimated that the flow becomes turbulent at a Reynolds number of
approximately 1500. In the variables used in this paper, Re = 2Grw/(σPr), where w

is the dimensionless velocity. It is interesting to note that for a very narrow tube,
the flow will be turbulent. In the range of Prandtl and Grashof numbers used in the
present work, Gr/Pr is of order 10 and w is of order 0.1. Then the model is valid for
laminar flow for an aspect ratio of order 0.01.

4.6. Flow oscillations

Consider flow at the Hopf bifurcation point, where the linear stability analysis finds
oscillatory flow. As an example case, at the onset of the Hopf bifurcation, Pr = 7.0,
Gr = 351.8, the frequency of the oscillation is ω = 8.365. Taking the velocity at the
centre of the profile, w = 0.154, estimate the time it takes for the fluid to circulate once
around a loop of circumference L by t = L/w. Relating these quantities through the
dimensionless variables yields t = 2πPr/wGr = 0.812. Using the relationship that a
period is 2π/ω gives t = 0.751. The time it takes the fluid to circulate around the loop
is roughly equal to a period of the oscillations. This is in agreement with other studies
Greif, Zvirin & Mertol 1979). Results for various Prandtl numbers are reported in
table 6.

5. Numerical analysis
5.1. The spectral code

We numerically compute the solution to the system (2.10)–(2.12) at given Pr and Gr.
The primary method of discretization is the pseudospectral method, briefly described
below. More complete discussion can be found, for example, in the works of Gottlieb
& Orszag (1977), Fornberg (1998), and Canuto et al. (1988).

Following the notation of Gottlieb & Orszag, for each t , u(x, t) is an element of
a Hilbert Space H with an inner product and a norm. For each t > 0, u(x, t) is a
member of the subspace B of H where functions in the subspace satisfy the boundary
conditions of the problem.

In this work we expand the solution

u(x) =

M∑
m=0

amTm(x)

where

Tm(x) = cos(m arccos(x))
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are the Chebyshev functions. One obtains the expansion coefficients

an =
2

cn

∫ 1

−1

u(x)Tm(x)(1 − x)−1/2 dx

with c0 = 2, cm = 1, m � 1.

The method used here is an integration-preconditioned spectral τ (pseudospectral)
method. In this method, the expansion functions are not required to satisfy the
boundary constraints. Rather, the boundary constraints are imposed as conditions
for determining the expansion coefficients, and we make the residual zero at as many
spatial points as possible.

This code uses the Gauss–Lobatto points, xj = cos(πj/M), and so the Chebyshev
expansion is a cosine expansion for which one can use a fast Fourier transform.

We will discuss two particular aspects of this numerical method: the preconditioning
by an integral operator and the boundary constraints. The derivative operator is an ill-
conditioned triangular matrix, whereas the integration operator is a banded matrix.
Then preconditioning the system by the appropriate order-n integration operator
results in a favourably conditioned system. The first n rows of the system become
zero, and one can replace these with row vectors associated with the boundary
constraints. See Coutsias et al. (1995) for further details.

To investigate the transient and steady-state behaviour of the system, we
implemented a time-dependent solver. The spatial component is discretized using
the pseudospectral method and the temporal component, as is customary in the use
of spectral methods to solve PDEs, using a finite difference method.

Consider the equation

Pr
∂u

∂t
= Lu + f (r, t) + N (u)

where f (r, t) is a forcing term and N (u) is a nonlinear term. This code computes Lu

and f (r, t) implicitly and N (u) explicitly. Discussion of the use of implicit-explicit
schemes is found in the paper by Ascher, Ruuth & Wetton (1995).

As an alternative means to find the steady-state flow, we have developed a Newton
code that directly finds a steady solution. This code has the advantage over the
time-dependent solver of quickly locating a steady state, and the matrices used in the
Newton code are the same as those used in finding the eigenvalues of the system.
The Newton code provides confirmation of steady-state results obtained via the time-
dependent code. In the time-dependent code we used time steps between 10−2 and
10−4.

5.2. Three-dimensional calculations with MPSalsa

We will discuss the numerical methods used by MPSalsa to locate steady-state
solutions of (2.1)–(2.3), the formulation of the eigenvalue problem and the Cayley
transform method, and the numerical solution of the eigenvalue problem.

A full description of the numerical methods in MPSalsa used to locate steady-state
solutions of (2.1)–(2.3) is available in Shadid (1999) and the references listed therein.
A brief overview is presented in this section.

A mesh of quadrilaterals for two-dimensional problems and hexahedra for three-
dimensional problems is generated to cover the domain. Although the code allows
for general unstructured meshes, the simple geometry of the present problem allows
the easy use of structured meshes. For parallel runs, the mesh is partitioned using the
Chaco code (Hendrickson & Leland 1995) in a way that will distribute work evenly
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while minimizing communication costs between processors. A Galerkin/least-squares
finite element method (GLS-FEM) (Hughes, Franca & Hulbert 1989) is used to
discretize the time-invariant versions of the governing partial differential equations
(2.1)–(2.3) into a set of nonlinear algebraic equations. This formulation includes a
pressure stabilization term so that the velocity components, temperature and pressure
fields can all be represented with equal-order nodal basis functions. GLS-FEM
is a consistent stabilized scheme because when the exact solution is inserted, the
Boussinesq equations are satisfied exactly. The code uses bilinear and trilinear nodal
elements for two- and three-dimensional problems, respectively.

Discretization of (2.1)–(2.3) results in the matrix equation

(
M 0
N 0

) [
u̇
ṗ

]
+

(
Ku,T + C(u) −D

DT + G Kp

) [
u
p

]
−

[
g

h

]
=

[
0
0

]
(5.1)

where u is the vector of fluid velocity components and temperature unknowns, p

is the pressure, M is the symmetric positive definite matrix of the overlaps of the
finite element basis functions, Ku,T is the stiffness matrix associated with velocity and
temperature, C(u) is the nonlinear convection, D is the discrete (weak) gradient, DT is
the discrete (weak) divergence operator and Kp is the stiffness matrix for the pressure.
G, Kp, N are stabilization terms arising from the GLS-FEM. The vectors g and h

denote terms due to boundary conditions and the Boussinesq approximation.
The resulting nonlinear algebraic equations arising from setting the time-derivative

terms to zero are solved using a fully coupled Newton–Raphson method (Shadid,
Tuminaro & Walker 1997). An analytic Jacobian matrix for the entire system is
calculated and stored in a sparse matrix storage format. At each Newton–Raphson
iteration, the linear system is solved using the Aztec package (Tuminaro et al. 1999)
of parallel preconditioned Krylov iterative solvers. The accuracy of the steady-state
solution is set by the following stopping criterion:(

1

N

N∑
i=1

(
|δi |

εR|xi | + εA

)2
)1/2

< 1.0,

where εR and εA are the relative and absolute tolerances desired, δi is the update
for the unknown xi and N is the total number of unknowns. We use relative and
absolute tolerances of 10−5 and 10−8, respectively, for this study. In Aztec the code
exclusively uses an unrestarted GMRES iteration with a non-overlapping Schwarz
preconditioner where an ILU preconditioner is used on each sub-domain (each
processor contains one sub-domain). These methods enable rapid convergence to
both stable and unstable steady-state solutions. The scalability of these methods to
large system sizes and numbers of processors is demonstrated by the solution of a 16
million unknown model on 2048 processors (Burroughs et al. 2001).

The GLS-FEM results in a spatial discretization of the Navier–Stokes equations
with the Boussinesq approximation. This leads to a finite-dimensional system of
differential algebraic equations of the form

Bẋ = F(x), x(0) = x0, (5.2)

where the matrix B is singular (due to the divergence-free constraint) and x is a vector
containing the nodal values of the velocities, temperature and pressure at the nodes of
the finite element mesh. Because of the stabilization terms in the GLS discretization,
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B, the matrix associated with the time-derivative term in (5.1) is a non-symmetric
matrix.

We solve the generalized eigenvalue problem

λBz = J(xs)z ≡ Jz. (5.3)

that arises from the linearisation of (5.2) about the steady state. The matrix J(xs)
is the Jacobian of F(·) linearized about xs . Assume that the eigenvalues are ordered
with respect to decreasing real part; Re(λi+1) � Re(λi). If all the eigenvalues of (5.3)
have negative real parts, the steady state is stable.

Use a Cayley transform to find the eigenvalues γi of the system

(J − σB)−1(J − µB)z = γ z

that are related to the eigenvalues λk of (5.3) via

γi =
λk − µ

λk − σ
, i = 1, . . . , n; k = 1, . . . , n.

Choose σ > 0 and µ = −σ ; we choose the value of σ so that it is of similar
magnitude to the imaginary part of the eigenvalue of interest, and so that σ > Re(λ1).
This transformation has the property of mapping a λ in the right half of the complex
plane (i.e. an unstable mode) to a γ outside the unit circle, and those on the left
half-plane (i.e. a stable mode) to a γ inside the unit circle. That is,

Re(λ) > 0 =⇒ ‖γ ‖ > 1.0, and Re(λ) < 0 =⇒ ‖γ ‖ < 1.0.

Since Arnoldi’s method will converge more rapidly to those eigenvalues with larger
magnitudes, this is a very desirable property for calculating eigenvalues for use in
linear stability analysis.

Further details are available in Lehoucq & Salinger (2001), Burroughs et al. (2004).
To compute the eigenvalues listed in table 2 we set g = β = κ = ν = 1 and

f (θ) = cos(θ). The mesh has N/4 by N/4 mesh divisions around a cross-section
and N + N/20 mesh divisions about the circumference of the loop. For the finest
mesh, there are 185 220 unknowns, solved on 64 processors of the Sandia-Intel TFlop
machine (ASCI Red) with 333 MHz Pentium processors. The code converges to the
steady state easily using a zero initial guess. The number of GMRES solutions
required for each eigensolver iteration is approximately 240. The time to compute
eigenvalues on the finest mesh is on the order of 2700 s.

6. Conclusions
An examination of flow in a thermosyphon has been conducted using a new PDE

model. In the case of a circular loop, the first Fourier modes exactly decouple from
all other Fourier modes, leaving a system of three coupled nonlinear PDEs that
completely describes the flow in the thermosyphon. This is in contrast to all existing
models, which use truncations, adjustable parameters, and other simplifications that
are avoided in this formulation.

The use of this model has allowed the identification of stable periodic flows at much
lower Prandtl number than predicted by Lorenz-type ODE models. In particular, this
model has identified periodic solutions for flows of Prandtl number greater than 18.5.

The trivial solution was found to be globally stable for all Prandtl numbers for
Ra < γ 4

01, where γ01 is the first zero of the J0 Bessel function. This global stability limit
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Figure 6. The bifurcation diagram at Pr = 7.
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Figure 7. An enlargement of the pitchfork bifurcation at Pr = 7.

coincides with the location of the first bifurcation, indicating the onset of convection
in the thermosyphon.

In figures 6 and 7 the bifurcation diagram is shown for Pr = 7. Notice that the
thermosyphon runs most efficiently for Grashof number around 10. For values of
Grashof greater than 10, the velocity slows. Figures 8–10 show flow profiles calculated
with the spectral code. Near the bifurcation point, the velocity profile is not parabolic;
rather it has developed a ‘dip’. Notice that it is the φ component of temperature that
drives this change. These profiles show how the Lorenz model will not accurately
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Figure 8. Velocity and temperature profiles at Pr = 7, Gr = 5.

capture the dynamics of the flow in the regions where the profiles are not parabolic.
We note that experiments have not been run with sufficiently small aspect ratios
to eliminate three-dimensional effects of the flow. For example, experiments by
Sano (1991) are run with aspect ratios of approximately 0.03 and 0.01, and by Stern,
et al. (1988) at 0.05, and both report flows that are not radially symmetric and have
three-dimensional effects. It should also be noted that these experiments were run
with water and ethyl alcohol, with Prandtl numbers around 7 and 15 respectively,
so they do not span the Prandtl numbers in the range of interest of our results,
particularly flows with Pr > 18.5.

Figure 11 shows the critical Grashof number, Grh, as a function of Prandtl number.
The Lorenz equations predict that the Hopf bifurcation occurs at the critical value
Gr = 64(Pr + 4)/Pr − 2; for Pr = 7, for example, this gives Gr = 140.8, where our
analysis shows that the critical value is Gr = 351.8; the Lorenz equations underpredict
the region where the convective solution is stable. Compare the curves of the predicted
Hopf bifurcation by the Lorenz and PDE models in figure 11. Both exhibit a vertical
asymptote as a lower bound, but the shape of the curve differs significantly as Pr grows.
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Figure 9. Velocity and temperature profiles at Pr = 7, Gr = 100.

There is significant difference between the Lorenz model and our reduced PDE
model in predicting whether the Hopf bifurcation is sub- or supercritical. As discussed
in § 4.3, our PDE model predicts that the Hopf bifurcation is subcritical for Prandtl
numbers less than 18.5 and supercritical for Prandtl numbers above that value. The
Lorenz equations, on the other hand, predict that the Hopf bifurcation is subcritical
for this entire range of values. Noting the significant difference in the shape of the
curves in figure 11 near Pr = 18, it is not surprising that the two models also differ
significantly in their predictions of criticality beyond this point.
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Figure 10. Velocity and temperature profiles at Pr = 7, Gr = 350.

Appendix A. Reduction to the Lorenz model
The Lorenz equations (Lorenz 1963) are a set of ordinary differential equations

that, for certain parameter values, provide a simple model of flow in a thermosyphon.
Most reported investigations of the thermosyphon problem use a reduction to the
Lorenz equations. This type of model exhibits the flow pattern of convection leading
to oscillation and chaos. We will compare the simplified PDE model (2.10)–(2.12)
to the Lorenz model by imposing a parabolic profile on each of the variables and
substituting this into the equations. For simplicity, we will neglect the curvature term
on the right-hand side of the φ and ψ equations.

It is the assumption of a parabolic profile that leads to the most significant limita-
tions of the Lorenz model. In the flow profiles shown in § 6, one can see that for high
values of the Grashof number the profiles deviate dramatically from parabolic. The
PDE model proves to be a better model for capturing the nature of the flow in this
region.
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Figure 11. The location of the Hopf bifurcation in the Lorenz and PDE models.

To derive the Lorenz model, substitute into (2.10), (2.11), and (2.12)

w(r, t) = ŵ(t)(r2 − 1),

φ(r, t) = φ̂(t)(r2 − 1),

ψ(r, t) = ψ0 + ψ̂(t)(r2 − 1),

and integrate over a circle of radius 1 to obtain

dŵ

dt
= −8ŵ + Prφ̂,

dφ̂

dt
= − 8

Pr
φ̂ − 2Gr

3Pr
ψ̂ŵ +

Grψ0ŵ

Pr
,

dψ̂

dt
= − 8

Pr
ψ̂ +

2Gr

3Pr
φ̂ŵ.

Now to correlate these equations to the Lorenz system, introduce

ŵ =
3ψ0P

16R
X, φ̂ =

3ψ0

2R
Y, ψ̂ =

3ψ0

2R
Z, t =

P

8
T, Pr = P, Gr =

64R

ψ0P
(A 1)

to arrive at the set of equations

dX

dT
= −PX + PY,

dY

dT
= −Y + RX − XZ,

dZ

dT
= −Z + XY.

which correspond to the Lorenz system (see Tritton 1988).



228 E. A. Burroughs, E. A. Coutsias and L. A. Romero

Appendix B. Global stability of the trivial branch
We will analyse the global stability of the trivial solution. There is a limit of the

parameters (Grashof number and Prandtl number) below which any perturbation
will settle to the trivial solution. This limit is identical to the pitchfork bifurcation
point found in § 3. Because we will show that the trivial branch is globally stable up
to the pitchfork bifurcation point, this provides a proof that the pitchfork bifurcation
is supercritical.

The proof of global stability will proceed as follows. First we will define an
energy function that depends on a parameter λ. The rate of change of energy can
be maximized by a function Gr(λ) of the Grashof number, and each value of λ
corresponds to a different energy rate. We will show that this rate of change of energy
is always negative. Then maximizing this function of Grashof number over all values
of λ, we find the optimal energy function, that is, the one that gives the largest value
of Gr for which a decaying energy rate can be guaranteed. This value of Gr is the
global stability limit, and corresponds to the pitchfork bifurcation point.

To facilitate the analysis, rescale equations (2.10)–(2.12) so that the Grashof number
appears symmetrically. Define

w =
√

Grw̃.

Then equations (B 1)–(B 3) become

Prφt =
√

Grw̃ψ + ∇2φ, (B 1)

Prψt = −
√

Grw̃φ + ∇2ψ, (B 2)

w̃t =
√

GrPrφ + ∇2w̃, (B 3)

along with boundary conditions

φ(1) = w(1) = 0,

ψ(1) = 1.

For simplicity, we will drop the tilde on the w.
Consider a disturbance (φ̂, ψ̂, ŵ) about the base flow (φ0, ψ0, w0); for the trivial

branch, this base flow is (0, 1, 0), so that

(φ, ψ, w) = (0 + φ̂, 1 + ψ̂, 0 + ŵ).

The disturbance to the base flow satisfies:

φ̂t =

√
Gr

Pr
ŵ +

√
Gr

Pr
ŵψ̂ +

1

Pr
∇2φ̂,

ψ̂ t = −
√

Gr

Pr
ŵφ̂ +

1

Pr
∇2ψ̂,

ŵt =
√

GrPrφ̂ + ∇2ŵ.

From here on we drop the hat notation.
Now form a family of energy functions that depend on the parameter λ:

E = 〈φ2〉 + 〈ψ2〉 + λ〈w2〉, (B 4)

where 〈u, v〉 denotes the integral
∫ 1

0
u(r)T v(r)r dr:

〈φt , φ〉 + 〈ψt, ψ〉 + λ〈wt, w〉

=

√
Gr

Pr
〈w, φ〉 + λ

√
GrPr〈φ, w〉 +

1

Pr
〈∇2φ, φ〉 +

1

Pr
〈∇2ψ, ψ〉 + λ〈∇2w, w〉.
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Use Green’s identity to rewrite the Laplacian terms, using that the disturbance
satisfies null boundary conditions, and Reynolds Transport Theorem to rewrite the
time derivative terms. This leads to the following theorem:

Theorem B.1. For equations (B 1)–(B 3), the energy defined by the family of curves
(B 4) satisfies the following equation:

∂E

∂t
=

√
Gr

Pr
(1 + λPr2)〈w, φ〉 − 1

Pr
〈|∇φ|2〉 − 1

Pr
〈|∇ψ |2〉 − λ〈|∇w|2〉. (B 5)

This equation is made up of the energy dissipation terms (the gradient terms) and
the energy production terms. We wish to find the balance between dissipation and
production terms so that the total rate of change of energy will always be negative,
keeping in mind that this equation defines the energy for a family of curves, one for
each λ.

First we will show that for each λ there is a maximum Grashof number where this
rate of change of energy is always negative. Then we will maximize this over all λ to
find the optimal energy function.

Equation (B 5) is of the form

∂E

∂t
=

∫ 1

0

F (r, y, y′)r dr := J

where y = (φ, ψ, w)T . Notice that J is a quadratic functional; it is because of this
that the following analysis holds.

It is clear that for Gr = 0, ∂E/∂t is negative, and that for small values of Gr, there
is still decay. There is a critical value of Gr where there will cease to be decay; one
can employ the Calculus of Variations to calculate this critical value.

First we will formulate the problem as a minimization problem. The critical Gr is
bounded above if the ratio of the dissipation to production is bounded below. That
is,

√
Gr < min


− 1

Pr
〈|∇φ|2〉 − 1

Pr
〈|∇ψ |2〉 − λ〈|∇w|2〉

1

Pr
(1 + λPr2)〈w, φ〉


 .

The ‘decay constant lemma’ proved by Joseph (1976) guarantees the existence of a
lower bound for this ratio.

One can use the Calculus of Variations to solve this minimization problem, and
this yields an eigenvalue problem. Taking the first variation of J , one gets

δJ =

∫ 1

0

(
Fy − d

dr
Fy ′

)
h(r)r dr = 0.

The solutions y satisfy null boundary conditions. Using the Fundamental Lemma of
the Calculus of Variations, the Euler–Lagrange equation must be satisfied:

Fy − d

dr
Fy ′ = 0,

which is the eigenvalue problem

√
Gr

(
1 + λPr2

Pr

)
w +

2

Pr
∇2φ = 0,
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2

Pr
∇2ψ = 0,

√
Gr

(
1 + λPr2

Pr

)
φ + 2λ∇2w = 0.

The equation for ψ decouples and is independent of Gr. Now notice that this is of
the same form as the eigenvalue problem solved in the linear stability analysis of the
pitchfork bifurcation, equation (3.1). The solutions of this eigenvalue problem have
the form (

φ

w

)
=

(
c1

c2

)
J0(γm0r)

where γ = γ0,k, k = 1, 2, 3, . . . , is a zero of the J0 Bessel function. From ∇2φ = −γ 2
0kφ

and ∇2w = −γ 2
0kw obtain the condition∣∣∣∣∣∣∣∣

−γ 2
0k

Pr

√
Gr

2Pr
(1 + λPr2)(√

Gr

2Pr

)
(1 + λPr2) −λγ 2

0k

∣∣∣∣∣∣∣∣
= 0.

The result is stated as a theorem.

Theorem B.2. The critical Gr is given by the following equation:

Gr(λ) =
4λγ 4

0kPr

(1 + λPr2)2
.

Each value of λ corresponds to a Grashof number that is the maximum value for
which the energy will always decay. Take the derivative with respect to λ to find the
value of λ that maximizes Gr. This is easily seen to be λ = 1/Pr2, leading to

Gr �
γ 4

0k

Pr
.

Depending on the specific root γ0,k of J0, the decay rate has a negative extremum
at Gr = γ 4

0k/Pr. However, only the value k = 1 corresponds to a maximum, as is
shown below.

B.1. Details of the maximization

The first variation has only determined that there is an extremum; it must be shown
that there is a maximum. Use the following theorem (Gelfand & Fomin 1991):

Theorem B.3. If P (x) > 0 and [a, b] contains no conjugate points to a, then
∫ b

a
(Ph′2+

Qh2)dx is positive definite for all h(x) such thath(a) = h(b) = 0.

A conjugate point ã to a is defined as a point for which −(d/dx)Ph′ + Qh = 0 has
a solution that vanishes for x = a and x = ã but is not identically 0.

The original formulation is of the form∫ 1

0

(P y
′2 + Q y2)r dr,

where P (x) is

diag

[
−1

Pr
,

−1

Pr
, −λ

]
.
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For the region to contain no conjugate points, choose the first Bessel zero, γ = γ01,
and then the rate of change of energy, ∂E/∂t, is negative definite, so the extremum
found is a maximum.

The global stability limit for the trivial solution is identical to the linear stability
limit for this non-convective branch, which in terms of Ra is

Rap = γ 4
01.

Appendix C. Hopf analysis
We analyse the convective solution to the system (2.15) and (2.16). Making the

substitutions s = ωt and τ = ε2s, write the system as follows:

(ωD∂s + ε2D∂τ − I∇2 − P)u = GrF(u).

Expand the solution

u = u0(r) + εu1(s, τ, r) + ε2u2(s, τ, r) + ε3u3(s, τ, r) + O(ε4).

Expand the Grashof number as

Gr = Grh + jε2,

where j = ±1, with j = +1 corresponding to Gr > Grh and j = −1 corresponding
to Gr < Grh. Expand the frequency as

ω = ω0 + εω1 + ε2ω2.

This leads to the system

((ω0D∂s − I∇2 − P ) + εω1D∂s + ε2(ω2D∂s + D∂τ ))

n∑
k=1

εkuk

=

(
u30Mu0 +

n∑
k=1

εk

(
k−1∑
l=1

u3k−lMul

)
+

n∑
k=1

εkJ0uk

)
(Grh + jε2)

where uij denotes the ith component of uj and J0 is the zero-order Bessel function.
The operators at each order are

L0 = ω0D∂s − I∇2 − P,

L1 = ω1D∂s,

L2 = ω2D∂s + D∂τ ,

L3 = ω3D∂s + ω1D∂τ .

The systems at each order are:
O(ε0):

L0u0 = Grhu30Mu0.

O(ε):

(L0 − GrhJ0)u1 = −L1u0.

O(ε2):

(L0 − GrhJ0)u2 = −L1u1 − L2u0 + Grhu31Mu1 + ju30Mu0.

O(ε3):

(L0 − GrhJ0)u3 = −L3u0 − L1u2 − L2u1 + Grhu32Mu1 + Grhu31Mu2 + jJ0u1.
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We now outline the steps in the asymptotic analysis. Compute u0 by solving the
steady-state equations to get a solution u0(r). Because u0 is independent of time,
L1u0 = L2u0 = L3u0 = 0.

At order ε,

(L0 − GrhJ0)u1 = 0.

Compute u1 by solving the eigenvalue problem to obtain

u1 = a(τ )A(r)eis + ā(τ ) Ā(r)e−is,

where the bar notation denotes the complex conjugate, and ω0.

At order ε2,

(L0 − GrhJ0)u2 = −L1u1 + Grhu31Mu1 + ju30Mu0.

The term L1u1 will produce expressions in eis , which are resonant terms. Then to
suppress these resonant terms choose ω1 = 0. The other terms on the right-hand
side will produce expressions in e0, e2is, and e−2is , so compute the solution u2 using
the method of undetermined coefficients, by solving a system Lu = b for each of the
harmonic terms.

Formulate the O(ε3) problem and use Fredholm’s Alternative Theorem (Keener
1995) to find a solvability condition.

C.1. Second-order problem

At order ε2, the right-hand side is

ju30Mu0 + Grhu31Mu1.

Examine each term. First,

ju30Mu0 = j


 u30u20

−u30u10

0




which is known from the order-ε0 equation. Second, using the notation Aij for the
ith component of Aj ,

Grhu31Mu1 = Grh(aA31e
is + āĀ31e

−is)M(a A1e
is + ā Ā1e

−is)

= 2aāGrh




A31Ā21

−A31Ā11

0


+ a2Grh




A31A21

−A31A11

0


 e2is + ā2Grh




Ā31Ā21

−Ā31Ā11

0


 e−2is,

so the right-hand side is

j




u30u20

−u30u10

0


 + 2|a|2GrhRe







A31Ā21

−A31Ā11

0







+a2Grh




A31A21

−A31A11

0


 e2is + ā2Grh




Ā31Ā21

−Ā31Ā11

0


 e−2is .



Reduced-order partial differential equation for flow in a thermosyphon 233

Solving with this right-hand side leads to a solution

u2 =


u12

u22

u32


 := B0(r) + (a2 B2(r)e

2is + c.c. ),

where

B0 = jb(1)
0 (r) + |a|2b(2)

0 (r)

is the solution of a real PDE with a real right-hand side, and so is real. Note that the
vectors B0 and B2 are computed numerically.

C.2. The Landau equation

Apply Fredholm’s Alternative Theorem (Keener 1995) at order ε3, adopting the
notation used in Joseph (1976)

〈a · b̄〉 =

∫ 1

0

a · b̄r dr

[a, b] =
1

T

∫ T

0

〈a · b̄〉 dt.

Solve the adjoint homogeneous problem,

(L0 − GrhJ0)
∗z = 0

and then require for solvability that f , the right-hand side at order ε3, satisfies

[ f , z] = 0.

The order-ε3 right-hand side is

−L2u1 + Grhu32Mu1 + Grhu31Mu2 + jJ0u1.

Examine each term. First,

−L2u1 = −(ω2D∂s + D∂τ )[a A1e
is + ā Ā1e

−is]

= −ω2D[aiA1e
is − āi Ā1e

−is] −
[
da

dτ
D A1e

is +
dā

dτ
D Ā1e

−is

]
.

Second, using the notation Bij for the ith component of Bj and b
(k)
ij for the ith

component of b(k)
j ,

Grhu32Mu1 = Grh(B30 + a2B32e
2is + ā2B̄32e

−2is)M(a A1e
is + ā Ā1e

−is)

= Grh




jb
(1)
30 (aA21e

is) + b
(2)
30 (a2āA21e

is) + (a2āB32Ā21e
is)

−j
(
b

(1)
30 (aA11e

is) + b
(2)
30 (a2āA11e

is) + (a2āB32Ā11e
is)

)
0


 + c.c.

Third,

Grhu31Mu2 = Grh(aA31e
is)M

(
jb(1)

0 + |a|2b(2)
0 + a2 B2e

2is
)

= Grh




jb
(1)
20 (aA31e

is) + b
(2)
20 (a2āA31e

is) + j (a2āB22Ā31e
is)

b
(1)
10 (aA31e

is) + b
(2)
10 (a2āA31e

is) + (a2āB12Ā31e
is)

0


 + c.c.
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Lastly,

jJ0u1 = ja




u30A21 + u20A31

−u30A11 − u10A31

0


 eis + c.c.

Therefore, the right-hand side is

−ω2D[aiA1e
is + c.c. ] −

[
da

dτ
DA1e

is + c.c.

]

+ Grh




jb
(1)
30 (aA21e

is) + jb
(2)
30 (a2āA21e

is) + (a2āB32Ā21e
is)

−
(
b

(1)
30 (aA11e

is) + b
(2)
30 (a2āA11e

is) + (a2āB32Ā11e
is)

)
0


 + c.c.

+ Grh




jb
(1)
20 (aA31e

is) + jb
(2)
20 (a2āA31e

is) + (a2āB22Ā31e
is)

b
(1)
10 (aA31e

is) + b
(2)
10 (a2āA31e

is) + (a2āB12Ā31e
is)

0


 + c.c.

+ ja




u30A21 + u20A31

−u30A11 − u10A31

0


eis + c.c.

Now enforce

[ f , z] = 0.

Compute the time integral of this solvability condition first; then the only non-zero
components are constant in time (s). These terms are

−ω2DaiA1· z̄ − da

dτ
DA1 · z̄ + jGrha




b
(1)
30 A21

b
(1)
30 A11

0


 · z̄ + jGrha




b
(1)
20 A31

b
(1)
10 A31

0


 · z̄

+ ja




u30A21 + u20A31

−u30A11 − u10A31

0


 z̄ + Grha

2ā




b
(2)
30 A21

b
(2)
30 A11

0


 · z̄

+ Grha
2ā




b
(2)
20 A31

b
(2)
10 A31

0


 · z̄ + Grha

2ā




B32Ā21 + B22Ā31

B32Ā11 + B12Ā31

0


 · z̄.

Now compute the volume integral of these terms and set it to zero, arriving at an
ODE in a:

α0

da

dτ
= jαa + βa|a|2 (C 1)

where the coefficients α0, α and β are determined via the volume integral.
The nature of the bifurcation has been reduced to the study of an ODE. Use the

Hopf bifurcation theorem as stated in Glendinning (1994):
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Theorem C.1. Hopf Bifurcation Theorem, Subcritical Case
Suppose that ẋ = f (x, y, µ), ẏ = g(x, y, µ) with f (0, 0, µ) = g(0, 0, µ) = 0 and that

the Jacobian matrix evaluated at the origin when µ = 0 is(
0 −ω

ω 0

)

for some ω �= 0. If fµx +gµy �= 0 and c �= 0 then a curve of periodic solutions bifurcates
from the origin into µ < 0 if c(fmux + gµy) > 0. If fµx + gµy > 0, then the origin is
stable for µ < 0 and unstable for µ > 0. If the origin is stable on the side of µ = 0 for
which the periodic solutions exist, the periodic solutions are unstable and the bifurcation
is subcritical. The constant c is given by

c =
1

16
(fxxx +gxxy +fxyy +gyyy)+

1

16ω
(fxy(fxx +fyy) − gxy(gxx +gyy) − fxxgxx +fyygyy)

evaluated at (x, y) = (0, 0).

This theorem can be applied as follows. Rescale the equation (C 1) to get

da

dτ
= jαa + β|a|2a.

Then breaking the system into its real and imaginary parts, it is in the form in the
theorem as stated above. The requirements for a subcritical bifurcation are met when
j = −1 and αr < 0, βr > 0. The computation of these coefficients is straightforward
and is being undertaken at this time.
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